Unit Test Workbench

Unit Test Workbench
Unit Test Workbench

Table of Contents

3

1. Overview

2. Unit Test Input
3

3. Unit Test Process
4

3.1 Step 1 - Design Unit Test Cases
4

3.1.1 Task 1 - Document Unit Test Cases
4

3.1.2 Task 2 - Perform Unit Test Case Quality Control
4

3.2 Step 2 - Complete Unit Test Checklist
5

3.3 Step 3 - Execute Unit Test Cases
5

4. Unit Test Quality Control
5

5. Unit Test Output
5

6. Testing Standards
5

7. Test Tools
5

8. QC Checklists
6

9. Appendix A - Unit Test Checklist
10

10. Appendix B - Unit Test Cases
13

1. Overview

This process describes the steps to plan, perform, and evaluate unit testing. Unit testing is performed on an individual software unit or module, and is normally performed by the developer of the unit. Unit testing is usually the most detailed phase of testing performed on a project.

The Unit Test Workbench has input which feeds the process. Quality control (QC) is performed to ensure the test meets standards. If QC is passed, the output is delivered. If QC is not passed, the process is repeated until QC is passed.

The Unit Test Workbench is supported by testing standards, guidelines, and test tools.

2. Unit Test Input

Input to the Unit Test Workbench includes:

· the technical blueprint (basic system design document)

· unit requirements

· unit specifications

· prototype

· software module or unit

· unit test checklist of general software functions

3. Unit Test Process

3.1 Step 1 - Design Unit Test Cases

3.1.1 Task 1 - Document Unit Test Cases

The purpose of this step is to develop specific test cases based on either unit logic (structure) or functional requirements and specifications. Unit test cases should validate:

· calculations

· input editing

· output verification

· decision points

· error messages

· data handling

· navigation and mouse movement

Functional unit test cases are developed from the technical blueprint before the unit is developed. As the unit is developed, logic-based test cases should also be documented.

Unit test cases should be:

· repeatable

· controllable (The test should follow a predefined path with predefined input.)

· recordable (The test result must not be ambiguous and the results must be traceable.)

Unit test cases should:

· cover the entire range of possible inputs

· include negative testing

· have specific purpose

· thoroughly exercise all the branches of the program code

· validate the accuracy of computational processes

· validate data and unit security

To document the unit test cases, use the worksheet found in Appendix A.

3.1.2 Task 2 - Perform Unit Test Case Quality Control

Before unit testing begins, the test manager will review the unit test cases to verify:

· all requirements are present

· requirements have been accurately interpreted

Step 2 - Complete Unit Test Checklist

There are two levels of unit test execution:

· the unit test checklist, which validates basic software functions common to units

· unit test cases, which are unique for each unit and based on requirements, specification, and software logic

The unit test checklist should be performed first to find basic defects. After the basic operation of the unit has been validated, the unique test cases can be performed.

3.2 Step 3 - Execute Unit Test Cases

Each test case must be fully executed and passed before a module can be promoted to the next test phase, unit-to-unit testing.

Formal defect reports are not expected from unit testing. The main test evaluation is to ensure all test cases have passed before promoting the unit to the next phase of testing (unit-to-unit testing).

If defects are found, the entire unit test should be rerun after the defects are fixed.

4. Unit Test Quality Control

Quality control is performed on the unit test process and deliverables to ensure all steps in the process have been performed and the deliverables are correct. The vehicle for unit test QC is a set of checklists. Each step in the unit test process should have a checklist.

The QC checklists are found at the end of the Unit Test Workbench.

5. Unit Test Output

The output of the Project Test Workbench includes:

· a completed Unit Test Checklist (general functions to be tested)

· unit test cases

· a completely tested module

· reusable test products (test data, test cases, etc.)

The primary output from the Unit Test Workbench will be a tested module, which is input to the Unit-to-Unit Test Workbench.

6. Testing Standards

Standards and guidelines support the Unit Test Workbench. There are standards for the:

· Unit Test Checklist (standard checklist for all units)

· Unit Test Cases (worksheet)

7. Test Tools

At the time of this writing, there are no automated test tools in place to support unit testing. It is expected that a future project will be performed to select and acquire the necessary tools to support each testing phase.

8. QC Checklists

	
	RESPONSE

	ITEM
	YES
	NO
	N/A
	COMMENTS

	DESIGN UNIT TEST CASES
1.
Are functional requirements or specifications documented?

2.
Have all functional requirements to be unit tested been identified?

3.
Are all functional requirements testable?

4.
Are structural requirements or specifications (e.g., performance, usability, etc.) documented?

5.
Have all structural requirements to be unit tested been identified?

6.
Are all structural requirements testable?

7.
Do the unit test cases cover:

a) field edits

b) user interface

c) database updating

d) file creation

e) report and print functions

f) module calculations

g) error conditions

h) array usage

I) searches

j) navigation

k) mouse movement

l) DCL correctness

8.
Do the test cases cover the entire range of possible inputs?

9.
Do the test cases include negative testing?

10.
Are the test cases repeatable?

11.
Do the test cases have a specific purpose?

12.
Do the structural test cases exercise all the branches of the program code?

13.
Do the test cases validate the accuracy of computational processes?

14.
Do the test cases validate data handling?

15.
Do the test cases validate data and unit security?

16.
Have the unit test cases been reviewed to verify that all requirements are present?

17.
Have the unit test cases been reviewed to verify that all requirements have been accurately interpreted?

18.
Are all test cases repeatable? That is, can the tests produce the same results when repeated?

19.
Are all test cases controllable? That is, can the test follow a predefined path with predefined input?

20.
Are all the test cases recordable? That is, are the test results non-ambiguous and traceable?

	
	
	
	

	
	RESPONSE

	ITEM
	YES
	NO
	N/A
	COMMENTS

	UNIT TEST EXECUTION (CHECKLIST OF BASIC FUNCTIONS)
1.
Has the unit test checklist of generic tests been completed?

2.
If any unit test checklist cases failed, have the defects been fixed?

3.
If defects have been fixed, has the entire unit test been performed again?

UNIT TEST EXECUTION (UNIQUE TEST CASES)
4.
Have the unique unit test cases been executed?

5.
Did all unique unit test cases pass?

6.
If any unit test cases failed, have the defects been fixed?

7.
If defects have been fixed, has the entire unit test been performed again?

	
	
	
	

9. Appendix A - Unit Test Checklist

Unit Test Checklist
Project Name/Version:

Module Name:

File Name(s):

	Check List
	Yes
	No
	N/A

	
	
	
	

	SCREEN INTERFACE:
	
	
	

	Are all field labels/numbers present and spelled/identified correctly?
	
	
	

	Do List Boxes/Drop-Down Lists contain all required inputs?
	
	
	

	Is field long enough to display entire data element?
	
	
	

	Have all required options been incorporated in the radio buttons?
	
	
	

	Is cursor navigation between fields correct?
	
	
	

	Does field prevent entries beyond maximum length?
	
	
	

	Does field initialize with correct information when entering the screen?
	
	
	

	Can screen be accessed correctly (by menu, icon, list, button etc.)?
	
	
	

	Can screen be used in all modes (Add/Delete/Change/Display/View)?
	
	
	

	Do data filters work correctly?
	
	
	

	Does cancel/escape take you back to the previous screen or menu?
	
	
	

	Does each defined function key work as expected?
	
	
	

	Does the system ignore function keys not defined?
	
	
	

	Are function keys consistent?
	
	
	

	Does the window maximize correctly?
	
	
	

	Does the window minimize correctly?
	
	
	

	Does the window close/exit correctly?
	
	
	

	Do all buttons work correctly?
	
	
	

	
	
	
	

	MENU OPERATIONS
	
	
	

	Are all menu labels and descriptions labeled/spelled correctly?
	
	
	

	Do the shortcut keys work correctly?
	
	
	

	Does defined letter shortcut work correctly?
	
	
	

	
	
	
	

	NUMERIC FIELDS:
	
	
	

	Do negative numbers process correctly?
	
	
	

	Are character and symbol entries rejected?
	
	
	

	Are fields signed correctly?
	
	
	

	Does number contain correct decimal placement (left and right)?
	
	
	

	Does the field accept the maximum value correctly?
	
	
	

	Does the field accept the minimum value correctly?
	
	
	

	
	
	
	

	RECORD UPDATES:
	
	
	

	Does screen save data correctly?
	
	
	

	Does screen reject data correctly?
	
	
	

	Does database update with expected data?
	
	
	

	Does screen protect against adding duplicate records?
	
	
	

	Does screen save modified data correctly?
	
	
	

	Does the first record process correctly?
	
	
	

	Does the last record process correctly?
	
	
	

	
	
	
	

	COMPUTATIONS:
	
	
	

	Do field required calculations generate correct output?
	
	
	

	Do algorithms reject division by 0?
	
	
	

	Do averages or percents work with very large numbers?
	
	
	

	Do averages or percents work with very small numbers?
	
	
	

	Do fields round/truncate correctly?
	
	
	

	Are non-integer inputs processed correctly?
	
	
	

	Check List
	Yes
	No
	N/A

	
	
	
	

	FILES AND ARRAYS:
	
	
	

	Does system handle empty files correctly?
	
	
	

	Does system handle files with corrupt data?
	
	
	

	Does system handle files with incomplete data?
	
	
	

	Does system process input data correctly?
	
	
	

	Does system handle two input files for same day correctly?
	
	
	

	Does DCL work correctly?
	
	
	

	Is EOF indicator correctly located?
	
	
	

	Is data written to correct file?
	
	
	

	Is data written in correct format?
	
	
	

	Is output file size correct?
	
	
	

	Is output complete?
	
	
	

	Is file integrity maintained when program aborts?
	
	
	

	Does file open correctly?
	
	
	

	Does the correct file version/generation open?
	
	
	

	Does the file close?
	
	
	

	Does file create correctly?
	
	
	

	Does the array fill correctly?
	
	
	

	Is there protection against subscripts which are too large?
	
	
	

	Do wildcard searches yield expected results?
	
	
	

	Do exact searches yield expected results?
	
	
	

	
	
	
	

	DATES:
	
	
	

	Do date inputs convert to correct application date format?
	
	
	

	Do dates comparisons work correctly?
	
	
	

	Does leap year work correctly?
	
	
	

	Does holiday date-sensitive logic work correctly?
	
	
	

	Does year 2000 work correctly?
	
	
	

	If current date is required, does it error if other dates are input?
	
	
	

	
	
	
	

	ERROR CONDITIONS:
	
	
	

	Are error messages correct?
	
	
	

	Does each error condition display individually?
	
	
	

	Does the cursor move to the field in error?
	
	
	

	Can multiple error conditions be created?
	
	
	

	Does the cursor move to the first field in error?
	
	
	

	Does the first error message match the first field in error?
	
	
	

	
	
	
	

	REPORTS:
	
	
	

	Does report totals match screen totals?
	
	
	

	Does report generate?
	
	
	

	Does report sort correctly?
	
	
	

	Does report foot correctly?
	
	
	

	Are headers spelled correctly?
	
	
	

	Do headers line up correctly?
	
	
	

	Does report break correctly?
	
	
	

Programmer:

Date:

Test Manager:

Date:

Testing Comments:

10. Appendix B - Unit Test Cases

	Project Name:
	
	Function/Module Name(s):

	
	
	

	

	Written By:
	Date:
	
	Executed By:
	Date:

	
	
	
	
	

	Case #
	Test Condition
	Expected Result
	Date

Passed

	
	
	
	

Page 1 of 13
FILE: UNITWB.DOC, 108032K
10/30/2002 8:51 PM

_1097516261.vsd

